I've been fairly busy since I got here, and I've bordered on stress trying to figure out 1) where all the eomysticetid specimens are in collections, 2) which earbones belong to which skull or skeleton (just taking a while to become familiarized with the specimen numbers), 3) trying to make some sense out of the earbones and trying to group them based on consistently seen characteristics (and I have made a bit of headway), and 4) just generally trying to figure out how many taxa I am dealing with and thus 5) how many manuscripts/dissertation chapters this will end up making. Since I've finally made some headway and started describing the first material (a partial skull with earbones and a very partial postcranial skeleton), I've relaxed a bit and can allocate time to other activities. That being said, I'm also locked out of the building for four days due to construction/maintenance activities in the building. Fortunately, this will give me an opportunity to divert some time to my Pelagiarctos study with Morgan Churchill. Also, in other news - I finally finished up my massive manuscript describing an entire marine mammal assemblage from a locality in the Purisima Formation, which resulted in being just over 200 double spaced pages long with 45 figures; Felix Marx graciously offered to take a look, as did Ewan Fordyce. I have a bit of work left cleaning up some figures, but it should be submittable soon.
Thursday, April 5, 2012
Visit to the Otago Museum
I've been fairly busy since I got here, and I've bordered on stress trying to figure out 1) where all the eomysticetid specimens are in collections, 2) which earbones belong to which skull or skeleton (just taking a while to become familiarized with the specimen numbers), 3) trying to make some sense out of the earbones and trying to group them based on consistently seen characteristics (and I have made a bit of headway), and 4) just generally trying to figure out how many taxa I am dealing with and thus 5) how many manuscripts/dissertation chapters this will end up making. Since I've finally made some headway and started describing the first material (a partial skull with earbones and a very partial postcranial skeleton), I've relaxed a bit and can allocate time to other activities. That being said, I'm also locked out of the building for four days due to construction/maintenance activities in the building. Fortunately, this will give me an opportunity to divert some time to my Pelagiarctos study with Morgan Churchill. Also, in other news - I finally finished up my massive manuscript describing an entire marine mammal assemblage from a locality in the Purisima Formation, which resulted in being just over 200 double spaced pages long with 45 figures; Felix Marx graciously offered to take a look, as did Ewan Fordyce. I have a bit of work left cleaning up some figures, but it should be submittable soon.
Saturday, February 19, 2011
Trip to New York
A few weeks ago I took a trip to New York in order to be officially hired as a writer for a website on whale evolution that Jonathan Geisler (New York College of Osteopathic Medicine) is collaborating on with John Gatesy (UC Riverside) for an NSF grant. This trip was convenient because Jonathan and I are collaborating on a couple of research projects together, including the description of a fragmentary pilot-whale like skull from the Purisima Formation, as well as working on a large body of Herpetocetus material from Northern California. Once the website is up, I'll go into quite a bit more detail about it.
In 2008 I presented a talk (my first oral presentation) at SVP on a new skull of Herpetocetus bramblei I had found the previous year. The skull is pretty nice, and has about half the rostrum and a complete braincase, with earbones (tympanic, petrosal, stapes, incus, malleus). Because of its completeness and preservation, it will be a daunting task just to describe it. Fortunately (or unfortunately, depending upon how you look at it!) I have since collected another skull with a complete rostrum, and another (slightly less complete) skull from higher up in the Purisima Formation which may represent a younger species. So, including a fragmentary braincase at UCMP, there are four Herpetocetus crania, about a dozen petrosals, several tympanics, a half dozen dentaries, and some postcrania that we need to describe. Anyway, we didn't really work on this project at all.
One day during the trip we went in to the AMNH to look at some modern odontocete crania for comparison with the fossil pilot whale. A year and a half before, when I presented my poster on it at SVP (the 2009 Bristol meeting), I had identified it as Globicephala sp. at the time; fossil delphinid expert Giovanni Bianucci mentioned to me that he was not quite convinced that it belonged in that taxon. At the time I just identified it as best I could, without really having access to crania of other globicephalines like Pseudorca, Peponocephala, and Feresa. During our AMNH trip, we came to a similar conclusion as Giovanni - it's got too many differences to be in Globicephala, as it shares some other similarities with Pseudorca and Feresa.
Jonathan Geisler puzzles over fossil and modern globicephaline skulls.
However, it still definitely falls within the clade Globicephalinae, and that's what's important any way. I'll go into more detail about the ramifications of this fossil later on once we've at least submitted our paper - hopefully sometime early summer I'll have this one (manuscript #6) off.
Here I am (with appropriate shirt for the visit) with a beluga (Delphinapterus) skull.
Perhaps in a later post I'll post some of the pictures I took on a 15 minute dash through the fourth floor exhibits (which was all the time I had before we wanted to leave).
Wednesday, February 2, 2011
Mammal bite marks on fur seal bones, part 2
Tuesday, January 4, 2011
Odontocete skull excavation 2



Monday, January 3, 2011
Odontocete skull excavation 1
By the middle of the afternoon, we had excavated a ring shaped hole around a cylinder of rock which contains the skull. A few pieces broken off (and glued back on) indicated that the skull was very well preserved. However, given the remaining amount of rock, I was concerned that we would not be able to finish before 5pm. Additionally, while excavating on the left side of the hole, I split off a piece of rock which contained a fragment of the rostrum. This indicated the rostrum was relatively long - a scary prospect, perhaps meaning I would have to return and finish the excavation the following day.
Here's the posterior braincase exposed: the right side of the skull is exposed, and the skull is upside down. The right squamosal, and occipital condyle are clearly visible in this photo.
After continued trenching around the cylinder of rock, at about 4pm, the base of the pedestal snapped unexpectedly, and the whole thing came out in one fifty pound piece. The anterior end of the pedestal terminated against an oblique fracture surface; I was nervous that the rostrum may have continued through this fracture. I carved off a half-inch from this surface, and found no bone; additionally, I found no bone in the end of the pedestal. Fortunately, this means the entire skull is preserved within the block.
Saturday, January 1, 2011
Associated dolphin vertebrae
Here's a closeup view of the specimens.
Chris Pirrone applies vinac to the fossil vertebrae.
We collected these three vertebrae, but it was too cold to stay and dig through the sediment for more bones. I'm sure there are more; some forelimb or cranial elements would be great. I'll return to the locality once some more storm activity cleans off the cliff exposures.
During the course of my taphonomic research of fossil vertebrates in the Purisima Formation, I've found that associated vertebrate remains (two or more elements which in life are only joined by soft tissue) are extremely rare in the shallow marine fossil record (if the Purisima Formation is taken to be a representative shallow marine deposit). Indeed, this is one of a couple dozen specimens showing any degree of association or articulation.
Friday, November 12, 2010
Shark-bitten dolphin skull
The thrill (or promise) of discovery is more than enough to keep me fueled in the field during the winter. Indeed, when the birds start singing and the snow melts in the spring, most paleontologists start to get field fever - the field season for most vertebrate paleontologists is during the summer months. Anyone who's ever tried to do coastal fieldwork during the summer, on the other hand, is in for a rude awakening. No erosion takes place during the summer, and many of the outcrops are totally buried. The exposures that are above the beach sand level (which is higher during the summer) are typically covered with dust, sand, and grime, which obscures fossils. The storms in the winter months clean this nasty coating off, and transport beach sand into offshore bars, often exposing strata below the beach (I see new fossil localities every winter this way). Winter is my field season.
Historically, I've had really good luck the day before Christmas Eve. It's my last day before Christmas to make it out in the field. The prior year, I found a humongous Carcharocles megalodon tooth (the only specimen known from the Purisima Formation), and discovered a partially articulated fur seal skeleton.
At 4pm, the tide was beginning to come back in, and with little over an hour of daylight, it was looking like I was going to come home empty-handed. I went to one last cove before I turned around to head back to the beach. I walked for a few minutes and spotted something in a boulder I had not seen on my way out: a pair of flat bones joined along an articulation that looked suspiciously (even from 20 feet away) like the palate of a dolphin skull. Upon closer examination, yes indeed! It was a dolphin skull in a mollusk shell bed; the width and flatness of the palate suggested it was not Parapontoporia, the most common odontocete in the Purisima Formation. I set about chopping into the boulder; fortunately, most of it was relatively soft. However, an extremely hard calcium-carbonate cemented concretion the size of a basketball had formed over the dorsal surface of the braincase and rostrum, and this slowed digging down. By dusk, the concretion didn't budge. After another half hour, it finally popped out of the boulder, and I lugged the 45 pound block back to my car. Exhausted, I drove home, drank a couple of hard-earned beers with dinner, and passed out.
Upon closer examination (which admittedly did not occur until yesterday, almost two years after collection) it became apparent that the abnormal area had two distinct, paralell linear gouges, and a short, less distinct third one in the middle (this one is still partly filled with matrix). Around these gouges is an area of exposed cancellous bone, where the bone has been removed.
I also found four more gouges present: two long ones, and two short ones; all but one are parallel. In fact, aside from the one gouge seen above trending towards the upper left corner of the photo, all the gouges are parallel. This is a textbook set of shark-inflicted bite marks. There are a lot of papers on this in the literature, documenting shark bites on dolphins, baleen whales, pinnipeds, sea turtles, other shark teeth, mosasaurs, plesiosaurs, dinosaur bones, sea stars, and probably other marine critters as well.
In fact, the first record of these types of trace fossils were actually first documented in the modern environment: on predated and scavenged sea-otter carcasses from Monterey Bay, and reported by Ames and Morejohn (1980). The reported linear gouges, subparallel wavy small gouges, and a specimen including a shark tooth embedded in a sea otter skull. The morphology of the traces along with the tooth identified the culprit as the Great White Shark, Carcharodon carcharias. Two years later, these exact types of traces were identified by Tom Demere and Richard Cerutti (1982) on a baleen whale dentary (of my favorite whale, Herpetocetus!), and identified as "Carcharodon sulcidens" (a taxon now just considered to be fossil Carcharodon carcharias).
It's not clear what type of shark fed on my poor little dolphin, or if it was a case of predation or scavening; from what I've read, the majority of carcasses that exhibit bites have bite marks on the posterior portion of the body, which is just about as far as you can get from the face. This makes total sense, given how a shark would have to bite into a fleeing dolphin during pursuit. Furthermore, it's interesting to note that this bite would have had to go clean through the dolphin's melon (if it had not already decomposed). Anyway, I interpret these traces as drag marks from the apices of the shark's teeth; I suppose later on I can figure out the relative motion of the shark's mouth during the bite (most likely lateral shake feeding). It'll make for a nice short paper some day...
Ames, J. A., and Morejohn, G.V., 1980, Evidence of white shark, Carcharodon carcharius, attacks on sea otters, Enhydra lutris: California Fish and Game, v. 66, p. 196-209.
Deméré, T.A., and Cerutti, R.A., 1982, A Pliocene shark attack on a cetotheriid whale: Journal of Paleontology, v. 56, p. 1480-1482Tuesday, November 2, 2010
A bizarre new pilot-whale relative from the Pliocene of the North Sea
I then thought, "whoa, that reconstruction looks really weird."

Fortunately, I was easily able to find a link to the pdf for the article (which came out today in the European journal Deinsea) and see why the beast in the painting looks so strange. Post and Kompanje (2010) report on a fragmentary cranium of a bizarre new odontocete. While very incomplete, the preserved portion of the rostrum (="snout") does exhibit some strange features - a very low tooth count (6 sockets/alveoli), a laterally convex toothrow, and an insanely wide lateral 'wing' of the premaxilla, which makes the rostrum wider towards the anterior tip. The maxilla is also not the lateral most portion of the rostrum towards the front - another weird feature (which is shared in the pilot whales, Globicephala, and the extinct Protoglobicephala). The lateral 'wing' of the premaxilla is also pointed 'upwards' (dorsally) a bit, to make the dorsal rostrum surface concave, like a giant spoon. Although totally weird, the rostrum shares a number of features with the pilot whale Globicephala - anteriorly widening premaxillae, rugose bone surface on the premax, a short laterally convex toothrow, and a rostrum that is pretty short and blunt in general. Globicephala in general is already a very strange critter, and Platalearostrum makes it look sober in comparison.
Other features (aside from its close affinity with Globicephala) indicate its inclusion within the clade Globicephalinae. The authors curiously chose to use the clade Orcininae - in the usage of Bianucci (2005). Recent molecular analyses have shown the Globicephalinae paraphyletic in the sense that Orcinus is usually not included - and everything else (Globicephala, Feresa, Grampus, Pseudorca, Orcaella) make a monophyletic group. Without Orcinus, it just isn't the Orcininae anymore. Orcininae may be a valid term if fossil taxa like Hemisyntrachelus and Arimidelphis are shown to be sister taxa of Orcinus orca and the extinct Orcinus citoniensis. That being said, Globicephala is not in that group. Which is all the more interesting, suggesting two different clades of delphinids trending toward (relative) gigantism during the Pliocene.

Bianucci, G., 2005. Armidelphis sorbinii a new small killer whale-like dolphin from the Pliocene of the Marecchia river (central eastern Italy) and a phylogenetic analysis of the Orcininae (Cetacea: Odontoceti) - Rivista Italiana di Paleontologia et Stratigrafia 111: 329-344
Wednesday, January 20, 2010
Uranocetus and hearing in mysticetes
Recently two mysticete related papers have been published - Erich Fitzgerald's monograph on the truly bizarre Mammalodon colliveri, which I'll cover later, and M.E. Steeman's (2009) thought provoking paper naming the new "cetothere" Uranocetus from the Miocene of Denmark and its implications for mysticete hearing.

The fact that most basal mysticetes have an enlarged mandibular foramen suggests that this is a feature inherited from basilosaurid ancestors. Interestingly, modern mysticetes are adapted for hearing low frequency sounds, which pass through dense bone without significant volume loss. While Uranocetus has a large mandibular foramen, the lateral wall is too thick to be useful for hearing anything aside from low frequency sounds (which Uranocetus is adapted to hear based on its cochlear structure; Steeman 2009). The exact same thing is seen in Herpetocetus, which is also adapted for low frequency hearing, but has a large foramen with a thick lateral wall. This suggests that at least in these later diverging taxa, that the large mandibular foramen was a vestigial feature perpetuated by phylogenetic inertia.

Steeman (2009) reasoned that the mandibular foramen decreased in size to strengthen the dentary due to the intense forces involved during feeding. Above shows a gray whale skull and mandible in articulation, just to give you an idea of how strange the mysticete feeding apparatus is (exclusive of baleen). In any event, I've been thinking about this quite a bit recently, and got to add a (very short) synopsis of this in my manuscript revisions, but you'll hear about that soon enough.
References-
Deméré, T.A. and A. Berta (2008). Cranial anatomy of the toothed mysticete Aetiocetus weltoni and its implications for aetiocetid phylogeny. Zoological Journal of Linnean Society, 154(2): 308-352. PDF
Deméré, T.A., A. Berta, and M.R. McGowen. 2005. The taxonomic and evolutionary history of fossil and modern balaenopteroid mysticetes. Journal of Mammalian Evolution 12:99-143.
Fitzgerald, E.M.G. 2009. The morphology and systematics of Mammalodon colliveri (Cetacea:Mysticeti), a toothed mysticete from the Oligocene of Australia. Zoological Journal of the Linnean Society 110p.
Johnston, C., T. Deméré, A. Berta, J. St. Leger and J. Yonas. 2009. Observations on the musculoskeletal anatomy of the head of a neonate gray whale (Eschrichtius robustus). Marine Mammal Science PDF
Nummela, S., J.G.M. Thewissen, S. Bajpai, T. Hussain, and K. Kumar. 2007. Sound transmision in archaic and modern whales: anatomical adaptations for underwater hearing. Anatomical Record 290:716-733.
Steeman, M.E. 2009. A new baleen whale from the late Miocene of Denmark and early mysticete hearing. Palaeontology 52 :1169-1190.
Sunday, December 6, 2009
Fossil preparation - odontocete tympanic
I began by finding the pieces of the robust involucrum, which is the thick portion of the cetacean tympanic. There are more or less three major portions of the tympanic: the involucrum (frequently the only preserved part), the posterior process, which attaches to the posterior involucrum, and the paper-thin involucrum (which in odontocetes is usually under 1-1.5mm thick, hence the overall fragility of these elements). Then, I started finding matching pieces, and gluing these to the involucrum.
After a couple more hours, I was able to finish gluing back most of the outer lip of the tympanic, as well as the posterior process.
After the fossil was glued together, it became very obvious that this was a tympanic from the "river dolphin" Parapontoporia wilsoni, which has a small posterior process, a sharp anterior apex of the bulla, and most characteristically a laterally inflated outer lip, not seen in any other Purisima odontocete (for which tympanics are known, and out of the given tympanic sample from the Purisima Fm.). As far as crania, jaws, periotics, tympanics, and parts thereof go, Parapontoporia is by far the most common Purisima odontocete (i.e. between collections at UCMP, SCMNH, and LACM go, there are roughly a dozen nearly complete crania known, rostrum not included).
Monday, November 2, 2009
New lower jaw of the extinct lipotid Parapontoporia
Anyway, after forty minutes of carving out a pedestal, cursing like mad because I thought I was going to destroy the fossil, and being investigated (and probably secretly laughed at) by a sea otter and a sea lion, I decided to undercut the pedestal. The pedestal was about 14" long and 5" wide, and I was worried that it might crack in half during undercutting - any bone exposed in that crack might fall out (and be swept away by the surf), and then I wouldn't be able to connect the bone from the two pieces of the pedestal back together. Needless to say I was shocked (and endlessly pleased) when the pedestal popped off perfectly.
This specimen may not represent P. wilsoni; the P. wilsoni holotype is about a million years older, and it is certainly possible that crania from this stratum represent P. sternbergi due to their younger age; description of material from the San Mateo Formation is needed to investigate this further. In fact, a huge body of fossils of Parapontoporia need to be described.
Parapontoporia was originally named for its similarity to the extant La Plata River dolphin, or Franciscana (Pontoporia blainvillei; Barnes, 1984, 1985). However, subsequent studies have placed it within the Lipotidae, as the sister taxon of the now extinct Yangtze River Dolphin (Lipotes vexillifer; Geisler and Sanders, 2003; Muizon, 1988), which was only described in 1918. Parapontoporia has an extremely long rostrum and mandibular symphysis, and *may* have the most teeth of any mammal (which, if it isn't Parapontoporia, I'm sure it's some kind of eurhinodelphid or other longirostrine odontocete from the Chesapeake Group of the east coast).
Wherever Parapontoporia occurs, it dominates the odontocete assemblage - in the Purisima, up to 38% of isolated periotics are referable to Parapontoporia. The most abundantly known odontocete crania from the Purisima belong to this taxon. Interestingly, despite decades of construction in San Diego, there are now more crania of this taxon known from the Purisima than from the San Diego Formation. Many of these Purisima crania are still in concretions, but nonetheless, they exist, and an excellent opportunity for a study of ontogenetic and stratigraphic variation is possible given this sample (a project Nick Pyenson was bugging me to do, but I simply didn't have the time as an undergrad). In fact, I picked up two partial crania this summer (both in nodules, though; one weighed about 55 pounds).
Nick Pyenson (2009) recently published a pretty neat (albeit depressing) paper in marine mammal science about the consequences of the extinction of Lipotes, given its 'colorful' evolutionary history. But this post is long enough as is, and I could do several more posts just on Parapontoporia; I'll save discussion of that paper for later.
BARNES, L. G. 1984. Fossil odontocetes (Mammalia: Cetacea) from the Almejas Formation, Isla Cedros, Mexico. Paleobios 42:1–46.
BARNES, L. G. 1985. Fossil pontoporiid dolphins (Mammalia: Cetacea) from the Pacific coast of North America. Contributions in Science, Natural History Museum of Los Angeles County 363:1–34.
GEISLER, J. H., AND A. E. SANDERS. 2003. Morphological evidence for the phylogeny of Cetacea. Journal of Mammalian Evolution 10:23–129.
MUIZON, C. de. 1988. Les relations phylog`en´etiques des Delphinida (Cetacea, Mammalia). Annales de Paleontologie 74:159–227.
PYENSON, N.D. 2009. Requiem for Lipotes: an evolutionary perspective on marine mammal extinction. Marine Mammal Science 25:714-724.