Tuesday, July 12, 2011

A bony toothed bird from the Purisima Formation, part 1

One foggy morning while doing fieldwork in the Purisima Formation, I spotted a cylindrical bone in the base of a cliff. It initially appeared hollow, but at the time of discovery, I wasn't so sure - sometimes mud and weathering products can obscure certain details of an exposed fossil. Eventually, I decided that it was most likely hollow - I scratched the inside of the bone, and had grains of ancient sand in my palm rather than bone fragments. The first step of excavating a fossil is trying to identify it: if you are positive about A) what bone you have discovered, B) what taxon it belongs to, and C) how it is oriented, you may excavate the fossil in a large block and not damage it. Sometimes you cannot limit your identification to one taxon, and this case was an example.

The end of the bone as it was exposed in the field.
Given the size of the bone, and how common marine mammals are, I assumed the most likely possibility was some sort of a fossil odontocete (toothed whale) jaw: the posterior lower jaws of odontocetes are hollow, and walled with thin bone. The only problem with this identification was that in cross section, odontocete jaws are flattened and sometimes nearly kidney-shaped - while this specimen had a more oval cross section. Nevertheless, it was my best guess at the time. When confronted by a situation like this- where you are uncertain of points A and B above, the best option is to carefully expose as much as possible until you can positively identify it. This is sometimes called "field prepping" (i.e. preparation), and sometimes may result in fragile bits of bones being broken off if you screw up or make a mistake while excavating (because field tools are less precise than lab tools, among other reasons). Aside from potentially resulting in breakage, field prepping takes time - time you may not have, if for example, you are working at low tide within the intertidal zone and have two hours left to finish.
The two sides of the unidentified bone.

Towards the end of the excavation, it was becoming clear that whatever I had found was something strange. I still thought I had an odontocete jaw, and at the time it was my best guess (I'll explain why later). I joked to myself in the field "Perhaps you've found the world's first Pliocene pterosaur!" Little did I know, I was more right about that joke than I realized at the time.

It had a slight curve to it, but it did not fan out at the posterior end like it should have if it were a jaw. I collected it in three big pieces, and upon these coming out, I saw that the sediment inside the bone was cemented - explaining why it was so well preserved, and not crushed. When I began preparing it at home, I was surprised to see that there was no enlarged mandibular foramen - again, a large hole should have been there - but instead, there was no opening in the bone.
A dentary of the bottlenose dolphin Tursiops; the enlarged posterior end and mandibular foramen can be seen on the right side of the picture (from Mead and Fordyce, 2009).

So what the hell was it? Upon leaving the field, I thought all I had was some weird odontocete with a strangely shaped jaw - perhaps a small sperm whale; they often have skinny lower jaws. However, I was once again surprised (and frustrated) by my lack of an identification, now that I had prepared the end of it (whichever end it was!). So I took a guess: some sort of a large bird bone. I did not take my thought too seriously, but the bone was in fact hollow, so I humored myself and opened up my copy of Lee Creek Volume III, and flipped to the article on the Yorktown Fm. bird assemblage.

One side of the complete end of the mystery bone.
The other end of the mystery bone.

Lo and behold, I had a match! The proximal end was a nearly exact match with the proximal fragment of a Pelagornis humerus figured by Olson and Rasmussen (2001); Pelagornis is a gigantic extinct species of bony toothed bird. I couldn't believe it: there was a very specific reason that I had not considered a bird as the owner of the unidentified bone: it was too large to represent any bird already known from the Purisima Formation, even a pelican or an albatross (in fact, it was over twice the size). I did not consider a pelagornithid simply because there are no documented occurrences of pelagornithids in younger than early Late Miocene rocks from the eastern North Pacific: there are plenty of Middle Miocene records of the bird Osteodontornis,
and a couple of records of it from the Monterey Formation. I had always assumed that they had gone extinct in the NE Pacific before the Pliocene; not only that, but this was a late Pliocene fossil. There are some Tortonian stage-like critters from the lowermost Purisima - a possible record of Imagotaria, as well as Megaptera miocaena, a Nannocetus-like cetotheriid, a possible record of Dusisiren, and some odds and ends - but this bird was far, far younger than this assemblage.Comparison of the fossil pelagornithid humerus (A, C) with the fragment from the Pliocene Yorktown Formation of North Carolina figured by Olson and Rasmussen (2001).

Check back for part 2, soon.

References:

Boessenecker, R.W. and N.A. Smith. 2011. Latest Pacific basin record of a bony-toothed bird (Aves, Pelagornithidae) from the Pliocene Purisima Formation of California, U.S.A. Journal of Vertebrate Paleontology 31(3):652-657.

Mead, J. G., and R. E. Fordyce. 2009. The therian skull: a lexicon with emphasis on the odontocetes. Smithsonian Contributions to Zoology 627:1-248.

Olson, S. L., and P. C. Rasmussen. 2001. Miocene and Pliocene birds from
the Lee Creek Mine, North Carolina. Smithsonian Contributions to
Paleobiology 90:233–365.

No comments:

Post a Comment