Dick Hilton digging up a huge baleen whale tympanic.
I couldn't have been more wrong. Unfortunately, I didn't know that I was until after the SATLW (Aquatic Tetrapods) conference. I did have a day or two before the conference to prepare the squamosal, and it did indeed have a plug-shaped posterior process of the petrosal, indicating it belonged to the Herpetocetinae, which includes Herpetocetus, Nannocetus, (probably) Piscobalaena, and Cephalotropis (according to Steeman, 2007). After the conference, I opened up the duct taped jacket and began preparation. After a couple hours the exposed pieces were still not making sense, and then I found a couple of bones that looked like they were adjacent to one another. When I removed them, there was a tiny neck of bone connecting them – and after a little more preparation, I realized it was a Herpetocetus petrosal and posterior process. Damnit, another goddamn Herpetocetus.
The petrosal and posterior process of the new specimen, with the facial nerve canal labeled. Upper left is ventral, lower left is dorsal, and right is medial view.
The skull with (partially incorrectly) articulated petrosal of the new skull in dorsal (top) and ventral (bottom) views.
Once I had enough of the block prepared, I realized I had quite a bit of the ventral portion of a small braincase preserved. It includes both exoccipitals, one occipital condyle, the basioccipital, the right squamosal, and the complete petrosal. After preparation, the petrosal is most similar to petrosals of Herpetocetus. This may be a bit technical, but herpetocetine baleen whales have several peculiar features that define them as a group. The posterior process of the petrosal – which is typically an elongate strap of bone that connects with the skull posteriorly – is very short and plug-shaped in these animals. Additionally, the posterior process (which is rarely found attached in isolated fossil mysticete petrosals) is flat and contributes to the lateral side of the skull, instead of being 'hidden' in a trench between the squamosal and exoccipital bones. Secondly, some herpetocetines have a flattened anterior process that is blade shaped; this structure is typically conical and robust or knoblike in most other mysticetes. Clearly, this specimen exhibits both of these features. Additionally, Herpetocetus spp. exhibit a large triangular flange on the side of the bone, which overhangs the squamosal – also present in this specimen. Additionally, herpetocetines all have extremely small earbones relative to most mysticetes. Unfortunately, the neck of the posterior process appears to have been deformed slightly, and when the main portion is articulated correctly, the posterior process sits in its trough a little wonky, and when the posterior process is articulated correctly, the main portion doesn't articulate well.
The posterior process, squamosal, and tympanic of Herpetocetus bramblei.
The two alternate articulations of the petrosal showing correct articulation of the posterior process (left) and correct articulation of the body of the petrosal (right).
The temporal region of the skull of Herpetocetus bramblei with the petrosal outlined in red.
However – it shows several features that differentiate it from all species of Herpetocetus as well as other herpetocetines like Nannocetus and Piscobalaena. Firstly, the anterior process is medially oriented – it is usually anteriorly facing instead. Second, the posterior process is very transversely narrow and elongate – it is typically more nearly circular in other species. Lastly, the most bizarre feature is that it has a very long anterior fissure of the facial nerve canal which is contorted into an S-shape – something I have not seen in any mysticete, fossil or modern.
Various mysticete petrosals in ventral view, showing two fossil rorquals (Plesiobalaenoptera and Balaenoptera sursiplana), a modern balaenid (Eubalaena japonica), the new specimen, and two other Herpetocetus specimens.
This is pretty exciting, and I am looking forward to preparing the other specimen, which includes part of a squamosal and a tympanic, and most likely a petrosal. It should not be too difficult to get these specimens written up and described.
Further Reading
Geisler, J. H. & Luo, Z.-X. 1996. The petrosal and inner ear of Herpetocetus sp. (Mammalia: Cetacea) and their implications for the phylogeny and hearing of archaic mysticetes. Journal of Vertebrate Paleontology, 70, 1045–1066.
Steeman, M.E. 2007. Cladistic analysis and a revised classification of fossil and recent mysticetes. Zoological Journal of the Linnean Society 150:875–894.
Steeman, M.E. 2010. The extinct baleen whale fauna from the Miocene-Pliocene of Belgium and the diagnostic cetacean ear bones. Journal of Systematic Palaeontology 8:63-80.
Whitmore, F.C., and L.G. Barnes. 2008. The Herpetocetinae, a new subfamily of extinct baleen whales (Mammalia, Cetacea, Cetotheriidae). In C.E. Ray, D.J. Bohaska, I.A. Koretsky, L.W. Ward, and L.G. Barnes (eds.). Geology and Paleontology of the Lee Creek Mine, North Carolina, IV. Virginia Museum of Natural History Special Publication 14:141–180.